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I. INTRODUCTION 
i-6 

The development of the quantum inverse method has provided new insight 

into the structure of solvable models in quantum field theory and statis- 

tical mechanics. It places the theory of completely integrable quantum 

systems in a unified framework and provides a powerful method for studying 

these systems. In this series of lectures, I will review some of these 

developments with particular emphasis on the study of Green's functions for 

integrable field theories. The approach to Green's functions which I will 

describe has been developed in collaboration with Dennis Creamer and David 
6-9 

Wilkinson. So far it has only been applied to the case of the nonlinear 

Schrodinger model, but it is reasonable to suspect that similar techniques 

can bs applied to other models. 

1'11 begin in Section II by reviewing the direct scattering.transform 1-5 

by which a certain set of "scattering data" operators are defined as 

function&s of the local fields. I'll describe the connection between the 

direct transform and the more traditional Bethe’s ansatz methods and 

briefly mention the relationship with transfer matrices in lattice statis- 

ticalmodels. The treatment of Green's functions is built upon the inverse 

(Gel'fand-Levitan) transform by which the local fields are written as 

operator functionals of the scattering data. In Section III I'll review 
6 

the derivation of the quantum Gel'fand-Levitan transform for the nonlinear 

Schrodinger model and discuss some of its properties. Section IV sets up 

the general formalism for studying Green's functions via the Gel'fand- 

9 
Levitan transform. In Section V we'll use this formalism to study the 

strong coupling (c +a) limit of the two-point function. Finally, in 

Section VI I review the analysis of the c = -two-point function by Jimbo, 
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12 
Miwa, Mori, and Sato and show that the first two terms in a strong coupling 

(l/c) expansion can be expressed in closed form in terms of Painlev; 

functions?"' 

II. BETHE'S ANSATZ AND TBB DIRECT SCATTERING TRANSFORM 

The Nonlinear Schrgdinger Model 

The case we'll be considering is the nonlinear Schrodinger model, 

defined by the Hamiltonian 

R = S[- 
ae*w 
axax + co*+*tJ4 1, dx (2.1) 

where @(x) is a nonrelativistic boson field with equal time commut.ation 

relations 

IQ(X), $3*(Y)] = 6(x - Y) - (2.2) 

The second term in Ii corresponds to a two-body delta-function potential. 

We'll consider the repulsive case c > 0, for which the problem of interest 

is to determine the spectrum and Green's functions for a finite density 

ground state <$*$a # 0. This is analogous to the problem faced in 

relativistic models like sine Gordon/massive Thirring, where the physical 

vacuum is a many-body Bethe's ansatz state. 

Before introducing the quantum inverse method, I'll review the Bethe 

ansatz approach to (2.1). In this approach we write down many-body states 

I Y> cc s dxl... dxW$(xl...xN)+*(X1)...+*(mN) IO> (2.3) 
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and try to choose the wave function II, so that /Y> is an exact eigenstate of 

H. The correct wave functions 8 have the characteristic Bethe ansatz form 

which I'll now describe. Consider first the two-particle state, 

IY(kl, k2)> = 
/ 

dxldx2e 
1 (klxl+k2x2) 

e (x1 - x2) + S(k21)8(x2 - xl) 
> 

Q*(Xp*(X2) lo> 

(2.4) 

where k 21 E k2 - kl and 

s(k) = k"s (2.5) 

is the two-body phase shift. The fact that (2.4) is an eigenstate of H may 

be shown directly by applying the operator H and using integration by parts 

to bring the kinetic energy derivative -a2/ax2 onto the two-body wave 

function. This gives 

HIW1, k2)' = (k12 + k22)I'+'(kl, k2)' (2.6) 

In the derivation of this result, there is a leftover term proportional to 

6(x1 - x2) coming from kinetic energy derivatives acting on the step 

functions in (2.4). This term is exactly cancelled by the 6-function 

interaction term. We can also write the two-body state in a different form 

by changing the normalization 

IQ(klk2)> B ( ' + e ) Iy(klk2)> 

2z J dxldx2e i(kll+k2X2) 1 _ & 

k21 
E (x21) 9*(x1)0*(x2) IO' 

f 
(2.7) 
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where x 21 5 x2 - x1. 

The Bethe ansats is or this model consists of a generalization of (2.4) 

to an arbitrary number of particles N such that 

Bjy(kl...kN)> = 

Just as in the two-body case (2.4) the wavefunction can bs written as a sum 

over N! orderings of the coordinates xp > x 
1 p2 

>... >x 
pN 

where 

(P1# P2, . ..I PN) is some permutation of (1, 2, . . . . N), 

Iy(kl...kN)> = 
s 

dxl...dxNexp i 9 
1 

x ,Yj s ( kPiPj)] ~*(Xl~.4%Nh (2.9a) 

Pi>P. 
3 

The unnormalized eigenstates analogous to (2.7) are written 

Io(kl...k$ = 

~+.*dxN=W' (if kixi)& i-j - ki?kj ..~-Xj~~~'xl)...**(XN),o> / (2.gb) 

Spectral properties of finite densitv states 

The finite density system is traditionally studied by placing an N- 

body system in a periodic box of length L and letting N+ Q with 

N/L = density fixed. The wave function 

slcx l’..XN) = <oleq . ..$(x.) j@(kl... k,)> (2.10) 
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is required to satisfy periodic boundary conditions (PBC',s) 

$(-L/2, X2...XN) = qJ(L/2, X2...XN) (2.11) 

which gives 

ikiL 
e = I-I S(kji) 

j#i 

It is convenient to take the log of the PBC's 

kiL = 
c Wj - ki) + 2ani 

j#i 

. (2.12) 

(2.13) 

where 

g(k) = - i log S(k) (2.14) 

The choice of nils in (2.13) is related to the choice of branch for the log 

in (2.14). The physical phase shift has a discontinuity of 271 at k = 0. 

This phase shift vanishes as c + 0 and the description of the ground state 

of the system is bosonic, i.e. n. = 0 for all i. 1 Instead it is convenient 

and conventionalto choose the phase shift which is continuous at k = 0 for 

finite c and becomes a step function as c+ 0. For this choice, the ground 

state has a fermionic description, n i+l - "i = 1. 

By subtracting adjacent PBC's in the ground state we obtain 
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k i+l -ki = $ e(kj - ki+l' - 6(kj - ki) 1 + 2 .(2.15) 

j 

As L + a, N + a, N/L fixed 

phi) = 
1 

L(ki+l- ki) + 
continuous function P p(k) (2.16) 

and the PBC's (2.15) reduce to an integral equation for the ground state 

density function 

s kF 
2rp (k) = 1+ A(k - k')p(k')dk' 

-kF 

(2.17) 

where 

A,(k) = “9 = 2c 
k2 + c2 

(2.18) 

The ground state is a Fermi sea of closely packed modes between -kF and kF. 

Excited states are formed by removing modes from the sea and placing them 

above the surface, forming particle-hole pairs. The particle-hole 

13 
spectrum was first worked out by Lieb. In the formulation of Yang 

and Yangl'the spectrum is given by a single function s(k) which satisfies a 

linear integral equation 

e(k) = k2-u+ dk' A(k - k')e(k') ?;; (2.19) 

where u is fixed by the requirement ~(2 k,) = 0. The excitation energy of 

a particle at kp and a hole at k h is given by 
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E = E(kp) - e(kh) (2.20) 

In the Yang and Yang formulation, there is a similar excitation function 

s(k) at finite temperature , which satisfies a nonlinear equation 

E(k) = k2-p-i 
s 

A(k - k')log (1 + e-8E(k')) s (2.21) 

where u= chemical potential and B= l/kT. This reduces to (2.19) for 

B -f -. The function c(k) also determines the equilibrium thermodynamics, 

e.g. the pressure of a gas as a function of fi and u is 

p=l 
B s 

$109 (l+e -BE (k)) (2.22) 

The function E(k) is of central importance in the model. (Similar 

functions can be constructed for other models, e.g. massive Thirring/sine 

Gordon.) It will reappear in the theory of Green's functions. 

Quantum Inverse Method 
1546 

In the classical inverse scattering method, we solve the initial value 

problem for a nonlinear field equation by considering a linear "Lax pair": 

a -y YY(x, Cl 
ax 

= iQ,,(x, cl’fh 5) (2.23) 

In the simplest applications, Q,,(x, 5) is a 2 x 2 matrix which depends on 

the local field $(x, t), and on an eigenvalue 5. If we think of the spatial 

component of the Lax pair as a time independent eigenvalue (scattering) 
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problem, the local field e(x) plays the role of a scattering potential, and 

(2.23) defines a one-to-one mapping between the field Q(x) at a fixed time 

t and the scattering data associated with the linear eigenvalue problem. 

The key point is that, by judicious choice of the matrices Q,,(x, 5) we may 

interpret the original nonlinear equation of motion as the consistency 

(integrability) condition obtained by cross-differentiation of the Lax 

pair, which gives 

FP 
= a,Q,, - a,q, + i Q,,# Qv = 0 [I 1 

With the particular choice 

PO = 

Q, = 

!2 
2 - c+*+ 

- Jdik$* - i$x*) 

k 
T a 

- dzj* 
) 

k -- 
2 

. (2.24) 

e(k@ t i@J 

/ 

(2.25) 

then F 
w 

= 0 becomes the nonlinear Schrodinger equation 

ia,+ = - a12+ + cl$12$ 

(2.26) 

(2.27) 

From this result it follows that the scattering data a(k), b(k) (where 

l/a = transmission coefficient and b/a = reflection coefficient) have a. 

trivial time dependence 
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a(k, t) = a(k,O) 

2 
b(k, t) = e-ik tb(k,O) 

FERMILAB-Conf-81/47-THY 

(2.28a) 

(2.28b) 

The inverse method solves the initial value problem much like Fourier 

transformation is used to solve a linear problem. The direct transform 

maps Q(x) + a(k), b(k) at time t = 0. The time evolution of a and b from 

t = 0 to some later time t is given by (2.28). At time twe must perform an 

inverse transform which maps a(k, t), b(k, t) back into the field con- 

figuration Q(x, t). This last step is accomplished by the Gel'fand-Levitan 

equation. 

In this section I'll discuss the quantum generalization of the direct 

transform, the significance of a(k) and b(k) as quantum operators, and the 

relationship with Bethe's ansatz. In the following section,' I'll discuss 

the generalization of the Gel'fand-Levitan (inverse) transform, which is 

the centerpiece for the treatment of Green's functions in the remaining 

sections. 

The quantum inverse method for the nonlinear Schriidinger model is 

based on a normal ordered operator version of the Zakharov-Shabat eigen- 

value problem (2.23) 

2 Y(x, k) = i : Qlh k)Y(x, k) : (2.29) 

A particular solution is specified by choosing a boundary condition. 

Requiring 'i'(xo, k) = I = identity matrix, we can write the solution to 

(2.29) formally as a path ordered exponential, 
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x 

y(x, k) = : P exp i 
/ 

Ql(y, k)dy : . (2.30) 

xO 

The solution Y(x, k) is a nonlocal string functional of the field 

operator Q(x). If 4(x) -t 0 weakly as 1x1 + f-we see that 

Y(x, k) - V(x, k) x (constant matrix) 
(x(+im 

where 

V(x, k) = 

eik x/2 

0 -ik e 

(2.31) 

(2.32) 

The scattering data operators are defined by the asymptotic form of 1;; 

S-(k) = lim v-~(x, k)Y(x, k)V(mo, k) 
X-K0 

x0+-m 

a.(k) b*(k) 
= 

> 
(2.33) 

b(k) a*(k) 

for real k. The central result of the quantum inverse method is a set of 

commutation relations among the scattering data operators. This is most 

3 elegantly derived by the method of Sklyanin, which is patterned after 

17 earlier work of Ba%ter. One uses the Zakharov-Shabat eguation to derive 

4x4 matrix equations for the direct products 

H12(x) 2 Y(x, kl) @ Y(x, k2) and H21(x) = yy(x, k2) @ \Y(x, kl). We get 

-Jn ax 12 = i : r12H12 : (2.34) 
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2, 
ax 21 = i : r21H21 : (2.35) 

where 

r 12 = Q(klb I + I @Q&J-ice+ 8 o- . (2.36) 

The key observation is that the matrices r12 and rzl are equivalent under a 

c-number similarity transformation 

r 
21 

= L5? rlp?-l (2.37) 

where 

'10 0 0 

0 B a0 
,gq = i ) 0 a B 0 

0 0 01 

(2.38) 

with 

kl - k2 
a = kl - k2 - ic B = -ic 

kl - k2 - ic . (2.39) 

This leads to the result that the direct products of the solutions are 

themselves related by 

Y2 63 Y; = R[Y; @ y,lR-l (2.40) 
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where the subscript denotes the eigenvalue. 

Equation (2.40) gives a set of commutation relations among the 

elements of the solution matrices. At this point there are two 

somewhat different approaches we may follow to further investigate the 

model. Let me refer to these two possibilities as the finite volume 

approach and the infinite volume approach. In the finite volume apprbach 

we define the scattering data operators in a box by choosing x 0 
= -L/2 in 

(2.29) and defining 

A(k) C(k) 
'i'(L/2, k) = E flLW (2.41) 

B(k) D(k) 

with the commutation relations 

IT gL(k2) ‘8 “L(kl) .% = 99 1 C SL,ckl, @ XL(k2) 1 (2,421 

where .%f9’is given by (2.38). By carefully taking the L + m limit, we 

obtain a somewhat simpler infinite volume algebra 

fl(k2) ‘03 Y(kl) BP, 1 = .Spm g(kl) @ g’(k2) 1 (2.43) 

where 

10 I) 0 

0 0 yo 

aa = ( 
0 0 a0 

) 
0 0 01 

(2.44) 
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kl - k2 
a = kl - k2 - ic 8 = 

kl - k2 + ic 

kl -k2 - (2-45) 

In particular, we find 

a(k)b(k') = 1 _ k fck, b(k')a(k) 

a*(k)b(k') = b(k')a*(k) 

(2.46a) 

(2.46b) 

2 
b*(k)b(k') = (k - k') + c2 b(k')b*(k) t 2va*(k)a(k)A(k - k') 

(k - k')2 
(2.46~) 

[a, a*1 = [ a, a 1 = [b, b 1 = o (2.46d) 

The commutators of a and b with the Hamiltonian may also be worked out, 

[H, a(k) 1 = o (2.47) 

[H, b(k) 1 = k'b(k) (2.48) 

which is the quantum analog of (2.26). All of these results may be 

verified order by order using the normal ordered series expansions~for a(k) 

and b(k): 

a(k) = 1 + c 
I 

dxldyltl(xl< yl)e 
ik(xl-Y1) 

+*(x,)Q(Y*) + . . . I (2.49) 

'b(k) = 
J 

dxle 
ikxl 

c- 
+*(x1) + c 

I 
dxldx2dy16(x1C yl' x2)e 

ik(xi+ x2- y,) 

, 

x wxl)o*(x2N(yl) -I- . . . (2.50) ' 
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From (2.48) we see that the states 
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lQ(kl...kN)> = b(k] 1 . . .b(kN) IO> (2.51) 

are exact eigenstates of A. From (2.50) it can be shown that the states 

(2.51) are precisely the unnormalized Bethe ansatz states (2.9b). The 

operator a(k) is diagonal on these states for all k and is the generator of 

an infinite number of conservation laws. In the infinite volume formalism, 

a particularly useful operator is the quantized reflection coefficient 

R(k) = b(k)a-l(k) . (2.52) 

This operator and its conjugate obey a simple algebra 

R(k)R(k') = S(k' - k)R(k')R(k) 

R(k)R+(k') = S(k - k')R+(k')R(k) + 2n&(k - k') 

(2.53) 

(2.54) 

where 

S(k - k’) = ; 1 ;; ; 4; = 2-body S-matrix . (2.55) 

States created by R" s are also eigenstates of H but with a different 

normalization. They are in fact the properly normalized states 

IY(k ,...kB)> defined in(2.9b). The R operators are of central importance 

in the theory of the inverse problem and Green's functions. 
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In the finite volume formalism it is also possible to construct 

Bethe's ansatz states, but this time the B-states diagonalize not A(k) but 

the trace of the monodromy'matrix (2.41) 

T(k) = Tr qk) = A(k) t D(k) . (2.56) 

This quantity is precisely analogous to the transfer matrix in twc- 

dimensional lattice statistics models. The states created by B's are not _ 

automatically eigenstates of T(k) as they are in the infinite volume case. 

Instead, a state B(kl)...B(kN)IO> is an eigenstate of T(k) only if 

kl,...,kN satisfy periodic boundary conditions. ' In this approach, the 

PBC's follow directly from the algebra of the operators A, B, C, and D. On 

the other hand, in the finite volume formalism the R-operators do not have 

nice properties, and the Gel'fand-Levitan transform has not yet been 

constructed. For the remainder of these lectures we will use the infinite 

volume approach to study Green's functions. This will result in no loss.of 

generality, since, as we will see, all the finite density results of Lieb 

and Liniger and Yang and Yang can be derived in this approach by studying 

finite temperature Green's functions. 

Let me conclude this section with some remarks on the quantum inverse 

method for lattice models and its deep connection with Baxter's method for 

solving the eight-vertex model. This connection has been extensively 
10.18 

developed by Faddeev and coworkers. It leads to an elegant and general 

formulation of quantum integrability based on the "Yang-Baxter relation," 

which is a generalization of the similarity relation (2.37). Essentially, 

one views the Jest solutions as strings of vertices of the form 
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ymW = Ll(k)L*(k)...Lm(k) (2.57) 

where Lj(k) is a matrix of local operators defined on lattice site j; 

Equation (2.57) is precisely analogous to the path-ordered exponential 

solution of the Sakharov-Shabat equation, F.-q. (2.30). The Yang-Baxter 

relation is 

.'% L,(k) @ L,(k') 1 [ = L,,W') @J L,(k) 9? 1 . (2.58) 

For the nonlinear Schrb'dingec case, Ln is a 2 x,2 matrix of field operators 

and 9 is just (2.38). Equation (2.58) leads directly to the results 

(2.40) and (2.42). For further discussions of the Yang-Baxter relation and 

how it arises in various models I refer you to the litecature and to the 

paper of Kulish and Sklyanin in these proceedings. 

III. THE OPERATOR GEL'FANLI-LEVITAN EQUATION 

The Gel'fand-Levitan equation is a dispersion relation for a Jost 

solution to the Zakharov-Shabat eigenvalue problem, 

1 
a i 

iz+F3 Y1 = 1 
- /a,‘$ 

( i 2 - i$ 3 Y2 = JF$*Yl 1 

(3.la) 

. (3.lb) 

Consider two column vector solutions to (3.1) defined by the boundary 

conditions 



(:;)xil[ ) 1 
ei5x/2 

0 

( ii) -( ,);,,, 
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(3.2) 

(3.3) 

From these boundary conditions it is easily shown that both+ and X admit 

analytic continuation into the lower half L-plane. Here analyticity of an 

operator is taken to b+ equivalent to analyticity of all its physical 

matrix elements. We will also need the conjugate solutions 

z cx, 5) = (y:; :I?) x" = (g i,::i (3.4) 

which are analytic in the upper-half c-plane. The Gel'fand-Levitan 

equation is a dispersion relation for an analytic function Q(x, 5) which is 

constructed fromthese Jost solutions. 

Classical case: 

In the classical theory, for r, = k = real the Jost solution+ can be 

written as a linear combination of x and;, 

$ = a? f bX, (3.5) 

where a and b are the scattering coefficients defined previously. Equation 

(3.5) may be verified by taking the Wronskian of both sides withx andX and 

using 

V2 - +icl = a (3.6) 
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+2;1 - Glii2 = b (3.7) 

,I, 

Thus, along the real axis, the function X which is analytic in the lower 

half-plane is related to the function $a‘-' which is analytic in the upper 

half-plane by 

l&la-l = G - &R*X (3.8) 

(Note: a has no zeroes in the lower half-plane for repulsive coupling 

c > 0.) Equation (3.8) suggests that we define a function 

ax, 5 1 = ?h5)e -ijx/2 for Img > 0 (3.9a) 

= tJ~(x,5)a-~(5)e-~~~'~ for Imc< 0 (3.9b) 

This function has a discontinuity proportional to the reflection coeffi- 

cient 

Disc@ = GR\e-i';X/2 

Also, from the Zakharov-Shabat equation we have 

m-1 as 5 +m 

Thus, Q can be reconstructed from its discontinuity, 

(3.10) 

(3.11) 

dk R*(k)X(x, k)e -ikx/2 

k- 5 
(3.12) 
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Evaluating just above the real axis, we obtain a coupled pair of integral 

equations, 

?(x, k)e -ikx/2 _ R*(k')X(x, k')e -ik'x/2 

k' - k - ie 

Quantum case: 
(3.13) 

In the quantum theory, the equation (3.8) which motivated the choice 

(3.9) for the Ip function is not a valid operator relation. Instead we 

define a function 

g(x, k) : z (x, k) - i&R*(k)X(x, k) (3.14) 

and study the ~analytic continuation of g into the lower half-plane. From 

the Zakharov-Shabat equation, we find that g satisfies 

(i & + $ k) gl = - &g,$ (3.'15) 

(i&-$k)g2 = m*g, - ic[R*(W, 4*(x)1x1 (3.16) 

Note that the last term in (3.16) arises from quantum ordering. Withoutit 

we would conclude that g = $a -1 as in the classical case. But the 

commutator [R*(k), 6*(x)1 can be evaluated by writing R* = ba-' and using 

-1 Wronskian relations for b and a . This gives 

[R*(k), 4*(x11 = (2, - &Rfx2)$ 2a-1 ~(3.17) 

= g2+J2a-l 
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Thus, the Z-S equation becomes a differential equation for g = g i 
( ) g.2 

with coefficients which are analytic in the lower half k plane. The 

asymptotic form of g also has simple analytic properties. For x +m we 

have 

g(x, k) * e ikx/2 

where 

z(k) = a*(k) - CR*(k)a*(k)R(k) ‘(3. I9) 

(3.18) 

a(k) is diagonal on the Bethe ansatz states , and we may verify that it is 

analytic in the lower half k-plane by studying its eigenvalues. On a one 

particle state we get 

:(k))kZ = - 2rrc6(k - kl) 1 1 k2> 

= ic 
’ + k - kl - ic 1 ’ k2’ 

(3.20) 

Nore generally, the h-function terms in the eigenvalue of z(k) simply 

change the signs of all the iE's, 

N 

z(k)1 kl...kN> = Ii 
C 

ic 
'+k- ki- ie 1 1 kl...kN' (3.21) 

1 

Thus, a function 
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Q(x, 5) = ;; (x, j )e-w2 ImL>O (3.22) 

= cl(x,5)e 
-i&/2 Im5>0 (3.23) 

is analytic in the full cut L-plane with 

Disc ip = i&R*X 

and 

Q-1+0$ 
0 

as, g--m 

(3.24) 

(3.25) 

This gives a pair of coupled integral equations for the operator Jost 

solutionsX 1 andX2*: 

xz*fx, k)e-ikx/2 = 1 + 2 
6 

a 
dk, R*(k:~Xl(;*-k;: 

-ik'x/2 

-03 
(3.26a) 

X1(x, k)eikx'2 = $ '-f adkl 
I 

X,*(X, k')R(k')eik'x'2 
k'-k + ie (3.26b) 

-m 
Solving these integral equations (e.g. by iteration) givesX 1 and X2* as 

02erator functionals of R and R*: 

X,(x, k)eikx'2 = -6 dkO 
hk 

eikoX R(k ) 
-kg-i< 0 

e 
i (ko+kl-Pl) x 

R'(pl)R(kl)R(ko) 
(k-kg-ie) (pl-kg-ie) (PI- kl-ie) 

(3.27) 
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X2*(x,-k)e-ikx'2 I dpl dkl e 
i (kl-pl) x 

= 1-c -- 
27~ 2rr (pl-k-ie)(pl-kl-ic) R+(pl)R(kl)(3.28) 

+ . . . 

The final step in the Gel'fand-Levitan procedure is to recover the local 

field operator 4(x) by taking the k-m limit of the Jost solution, 

X1(x, k)eikx" 6 -- -i; (J(X) t O(l/k2) 
k- 

The field is thus written as an infinite series, 

where 

xR*(plk, ..R"(pn)R(kn)...R(ko) (3.31) 

The asymptotic expression for the other component of the Jost solution X2 

yields a series for the charge density jo(x) = $*(x)$(x). 

Gel'fand-Levitan series as a generalized Jordan-Wigner transformation 

The Gel'fand-Levitan transform (3.31) has a very interesting struc- 

ture which can be studied term by term. Perhaps I should say at the outset 

that I'm not entirely satisfied with the style of analysis that I'll 

outline in this and subsequent sections. It would be nice if there were a 

more elegant way of studying Green's functions than term-by-term analysis 
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of series expansions. My general feeling is that a better approach would 

make more direct use of the Gel'fand-Levitan integral equation and the 

Jest solutions, but such an approach has not yet been devised. The 

situation is reminiscent of the direct problem, where the properties of 

the a and b operators were first discovered by studying their series 

expansions and then subsequently derived by more elegant means. I hope 

that this history will repeat itself for the inverse problem, but for now 

I must rely on the term-by-term approach. 

The lowest order term in (3.30) is just the Fourier transform of the 

reflection coefficient 

The second term is 

i(kO+kl-p 
2n 2n 2ll 

Q(o)(x) q t$ eikoX R(k0) s R"(x). (3:32)~ 

,1x (-c)R*(pl)R(kl)R(ko) 
(Pl- kO) (p, - kl) -' 

(3.33) 

Hereafter, momentum denominators will be understood to have infinitesimal 

negative imaginary parts. By writing the denominator in (3.33) as 

1 
?p,- kO)(~l- kl) = 

l-1 
pl- k0 pl- kl ' 1 (3.34) 

making the charge of variables kl- k0 in the first term and using the 

commutation relation (2.53) we can replace the integrand in (3.33) by 

(-c) + C-k) 
(pl-ko)(pl-kl) 

= p';i; [S(klO) - 11. (p,- kl)(klO+ 1~) 1 1 
(3.35) 
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Equation (3.33) can then be written very simply in coordinate space 

[R;t(z)&)R"(z) - R"*(=)R"(=)R"(x)). (3.36) 

To understand the general term +I Cd you should think of (3.36) as being 

obtained from o(*)(x) [i.e., &.)I by inserting the operators g*(z) and 

g(z) in two different ways and then integrating over Z. The first term 

in (3.36) is an "outside" insertion and appears with a plus sign, while 

the second term is an "inside" insertion and has a minus sign. This 

pattern repeats itself in a straightforward way for the higher terms in 

the series, with each term $(*) bsing obtained from the previous 

term $("-1) by an "outside ninus inside" insertion of R"x(zn) and R"(zn), 

with zn integrated from znel to % For example, the next term is 

$(x) = I,~dsl~~a2~[~**(.2)~*(.l)R”(x)R”(rl~R”(i2) 

- ~*(z1)~~(z2)R”(z2)R”(x)R”(z1)1 (3.37) 

- [~*(z2)~*(z1)~(z1)~(i(x)~(z2) - ~*(zl)R”+(z2)R”(z2)R”(z1)R”(x)l 1, 

where the first two terms in (3.37) are obtained from the first term in 

(3.36) and the second two terms of (3.37) are obtained from the second 

term in (3.36). The general term can be written most easily in momentum 

space, 

n dpi&dki ik,,x 
Q(")(X) = j-T -qp- e bzl...dzn8(x < z1 <.-.< zn) 

Uki-pi)zi 
(S10-1)(S20S12S21-1)...(snos~nsnl...sn-~%* * , - 

1-1) 

x R*(pl)-.. R*(p,)R(kn)...R(kg). (3.38) 



25 FERMILAB-Conf-81/47-THY 

where SiJ s S(pij) and Sij- S(kij). The factors (SS...S-1) in (3.38) are 

the momentum space version of "outside minus inside" insertions. I will 

not give a complete derivation of (3.38) here. The only derivation I 

know involves a rather lengthy combinatorial analysis which is most 

easily handled by graphical techniques. It turns out that the Gel'fand- 

Levitan series for Q(x) can be given a convenient graphical interpre- 

tation in terms of "factorized graphs," which were developed for this 

model several years ago-l9 This graphical formalism is very useful for 

handling the combinatorics involved in deriving formulas like (3.38), but 

it would take us too far afield to describe it here. 

The form of the Gel'fand-Levitan series provided by Eq. (3.38) is 

particularly well suited to studying Green's functions in the strong 

coupling (C") limit. In fact, in the limit c*, the Gel'fand-Levitan 

transform reduces to the more familiar Jordan-Signer transformation.7 

For c+=', Shl, and Eq. (3.38) reduces to 

+(*)(x) = d 
N! 

-dz iix(z)R"(z) R"(x); 
I 

(3.39) 

where NR specifies normal ordering with respect to the R operators. Note 

that the algebra of R operators (2.53)-(2.54) reduces to canonical anti- 

commutation relations, and thus E(x) is a local fermion field. The 

transform (3.30) reduces to 

[J 

ro 

.$(x1 = NRexp -2 R;t(z)X"(z)dz x"cx) 
x 1 

which may also be written 

m 

i*(z)&.)dz R"(x). 1 

(3.40) 

(3.41) 
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This can be recognized as the standard fom of a Jordan-Wigner fermion- 

to-boson transformation. The Jordan-Wigner transformation is also used 

in the solution of other models (e.g., the 2-D Ising model and the X-Y 

spin chain) which have the algebraic structure of a free fernion 

theory. These free fermion models can be regarded as special cases of 

I*isre general Bethe's ansatz models (e.g., the Ising model and XY spin 

chain are special cases of the Baxter model and the XYZ spin chain 

respectively). Whereas the theory of Green's functions for Bethe's 

snsatz models is not very well understood, the special free-fermion cases 

are rather well-studied. The Green's functions for the c=- non- 

linear Schridinger node1 were first discussed by Schultz20 and Lenard,21 

who related the 2n-point functions to the nth Fredholm minor associated 

with an integral kernel K(x,y) = sin(x-y)/(x-y). I'll come back to this 

result In Section V, where I shall discuss the large c expansion of the 

Green's functions. Recently, in an elegant series of developments by 

Sato, Miwa, and Jimbo,22 the Green's functions for the free-fermion 

models were found to be deeply related to the theory of isononodronic 

deformations of linear differential equations, whose mathematical origins 

go back to the early part of this century. In particular, this con- 

nection allowed SW to express ths two-point functions for these models 

in closed form in terms of Painlevg functions. I'll review snme of these 

developments in the last lecture. 
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IV. GREEN'S FUNCTIONS-GENERAL FORMALISM 

I want to consider the two-point equal time correlation function 

<P(x) 4(y)>* where <...>n represents either a ground state expectation 

value or a thermal average, depending on whether we're discussing the 

zero or finite-temperature Green's functions. The basic idea of the 

quantum inverse approach to Green's functions is to express o*(x) and 

C(y) in terms of R* and R operators and use this expression to compute 

expectation values. In order to do this we need two theorems, a 

reordering theoren and a trace theorem. The reordering theorem tells how 

to write the operator product 4*(x) Q(y) as a normal ordered functional 

of R* and R. The trace theorem tells how to compute the thermal average 

of a normal product of R*'s and R's. 

Reordering Theorem 

Beginning with the Gel'fand Levitan Series 

Q(Y) = i. / f 2 $- 2 gN (ei>ki;y) 

R*(pl)..- R*(eN) R(kN)...R(k$ (4.1) 

f+*(x) = N& f $ 2 f) 2 g;(kiqx) 

R*(P$ . ..R*(eN) R(kN)...ROcl), (4.2) 

we can form the operator product $*x(x) #(y) which must be rearranged into 

normal ordered form. For the present discussion, the integrand gN may be 
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taken from either (3.31) or (3.38). Recall that in the derivation of the 

quantum Gel'fand-Levitan equation we made essential use of the fact that 

the comutator [R*(k), $*(x)1, Eq. (3.171, could be analytically contin- 

ued into the lower half-plane. This same analyticity property can be 

used to derive a reordering theorem for 9*(x) 4(y). For definiteness, 

consider the case x > y. Write e*(x) as a GL series but leave Q(y), 

giving 

4*(x) Q(Y) = ,r, 1 $ 2 : 2 g; (ki,pi;d 

Rib01 . ..R*(pN)R(kN)...R(kl)~(y)- (4.3) 

For x > y, the analyticity of [R(k), Q(y)1 in the upper half-plane allows 

us to move Q(y) to the left past all the R(k)'s. All the commutator 

terms vanish, since for each ki gN*(ki,pi) is also analytic in the upper 

half-plane and the integrand + 0 asymptotically. Thus 4(y) can be placed 

between the R*'s and the R's in (4.3) and then expanded, yielding a nor- 

nal ordered series for 4*(x) 4(y): 

o*(x) Q(Y) = j. / +$ 2 ; 2 FN(Pi,ki;W 

R*(P$ . . .R*(e,)W,). . .R($,), (4.4) 

where 

FN(ei,klw) = j. ga(ko...klt-l;pg...pQ:X) gn-a(PILtl...PN;kll.-.kN;y) 

(4.5) 
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Temperature Green's Functions: Trace Theorem 

As I discussed in Section II, the theory of Green's functions is 

being developed here in the infinite volume formalism, where the R 

operators have simple commutation relations (2.53)-(2.54) and also 

commute simply with the Hamiltonian 

W,R*Wl - k2R*(k). (4.6) 

With these algebraic properties, the two-point function can be computed 

term by term from the series (4.4). Of course, in the infinite volume 

formalism we must be careful to define the correct prescription for hand- 
- 

ling the infrared singularities which arise from integrations over an 

iufinite volume. The subtleties associated with these infrared~ singular- 

ities and their relevance to the formulation of statistical mechanics 

without a box were discussed some time ago in the language of factorized 

graphs. (See the second paper in Ref. 19.) The procedure which I will 

outline below evolved from these graphical studies. 

We will consider the finite temperature Green's function 

GE,$x - Y) = Q(y)*-m I 
Tre-t3R ’ (4.7) 

where 0 = H-N. In computing the trace in the numerator of (4.7) we must 

consider diagonal matrix elements of the operator in square brackets. In 

the calculation of these matrix elements, we encounter two basic types of 

infrared divergence. One type arises from the presence of disconnected 

graphs in the trace, which leads to momentum space delta-functions with 

vanishing argument (i.e., 6(O) factors). These disconnected graphs nay 
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be easily removed by dividing out a factor of Tre-8* as in (4.7). The 

other type of infrared divergence is more subtle. It arises in the con- 

nected part of a matrix element, e.g., 

<p1 -..p,IO*(x) O(Y) e-WlklS..k,>, 

i?nen we try to take the forward limit pi + ki. Imagine computing the 

matrix element (4.8) from the many-body coordinate space wave func- 

tions. This involves integrating over the coordinates zl,...,sN of the N 

particles. The forward singularities arise from the asymptotic parts oE 

this integration which become undamped in the limit pi + ki (i.*., terms 

which behave like e 
i(Pi-ki)si as s 

i 'f -)' If we considered a limit.of 

(4.8) where some but not all of the pi's are set equal to the kils, then 

these singularities are really there and the limit does not exist because 

of divergences of the form (pi-ki f is)-1. However, to compute a trace 

we need the diagonal (forward) matrix element, which is obtained by set- 

ting all momentum differences (pi-ki) to zero simultaneously with fixed 

ratio. For the connected part of the matrix element (4.8) this forwards 

limit is finite, because each singular denomintor (pi-ki f is) is multi- 

plied by a vanishing factor of the form [e i(o-o')-l], "h ere 0 is a sum of 

Bethe's ansatz phase shifts depending on the relative momenta kij in the 

initial state, and 0' is the corresponding sum of phase shifts for the 

pij 's in the final state. In the forward limit the phase shifts in the 

initial and final states match up, i.e. 0' + 0, rendering this limit 

finite. Pursuing this argument, it is now easy to see the correct pro- 

cedure for calculating the forward matrix elements needed to compute the 

trace in (4.7). Consider the effect of any reasonable sort of cutoff on 
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the coordinate space integrations, e.g., a sharp cutoff (a box of length 

L) or an adiabatic cutoff (i.e., keeping the is's finite in the singular 

denominators). This simply regularizes the singular denoninators without 
, 

affecting the vanishing numerators [ei('-' )-I]. So the correct pre- 

scription is to set to zero all terms in the matrix element which have 

singular factors of the form 

ei(Q-O’)-l 1 ei-ki ct is ’ (4.9) . 

The connected forward matrix element is given by the remaining terms 

which have in singular ratios and hence have an unambiguous forward 

limit. 

I will now introduce the basic device that will be used to correctly 

regularize the infrared singularities and compute the temperature Green's 

function (4.7). I will call this device the "infinitesimal boost 

method." Define the Galilean boost generator 

K = 
J 

x$*(x) Q(x) dx. (4.10) 

The R operators have a simple behavior under boosts: 

eiqKR(k)eViqK = R(k + q). (4.11) 

The basic assertion of the infinitesimal boost method is that the Green's 

function (4.7) is given by the formula 

G 8, p-Y) = lim Tr 4*(x) 4(y) emBnemiqK . 
P'O I 

(4.12) 
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From the previous discussion it is easy to see why this method works. A 

forward N-body matrix element of the operator in square brackets in 

(4.12) will be of the form (4.8), where the ki's are shifted from the 

pi's by a small momentum q, i.e., ki = pi-q. This does two things. 

First is eliminates disconnected graphs, since a disconnected subgraph is 

essentially an integrated matrix element of e -8a between states 

<P1,"..P~ ) and Ipl-q,...,pQ-q> which vanishes by momentum conserva- 

tion. (In fact we could have divided (4.12) by a factor Tr(em8*eWiqK), 

which is unity because it only receives a contribution from the zero 

particle state.) The fully connected graphs do not vanish because the 

operator p(x) q(y) is there to absorb the momentum Nq. In addition to 

eliminating disconnected graphs, formula (4.12) also sets factors like 

(4.9) in the singular connected graphs to zero (which, as I have argued, 

is the correct thing to do). This happens because the phase shifts Q and 

Q' in the numerator depend only on the relative momenta kij and p 
Li which 

are not affected by a Galilean boost. Thus the numerator is identically 

zero even for finite q. 

Using the equation (4.12) along with the series (4.4) and the alge- 

braic properties of the R-operators, we may compute the Green's functioti 

term by term in the series. To do this we will use a convenient theorem 

for evaluating traces of the form Tr{R*(pO)...R*(pN)R(kN)...R(kO)e -gn 

e -W>. Consider first the simplest case N=O, 

Tr{R*(p) R(k) e-B* e-iqK}. (4.13) 

Using the properties 
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R(k) e-8R = .-B(k2-u) .-8n R(k) 

R(k) e-iqK = e- hK R(k + q) 

FERMILAB-Conf-81/47-THY 

(4.14) 

(4.15) 

R(k) R*(P) = 24~ - k) + S(k - p) R*(p) R(k), (4.16) 

and the cyclic property of the trace, we generate a fugacity series for 

(4.13) in the limit q -i 0: 

Tr(R*(p)R(k) a -80 e-iqKj -&j+ -jl &,* e-nfi2x <k-nqlp~ bO(q)l, 

L4.17) 

where z 2 e6' = fugacity- By an inductive argument, this result can be 

generalized to the following trace theorem: 

Tr(R*(pO)... R*(pN) R(kN)...R(ko) e -60 eWiqK) 

= (-l)N I (4.18) 
no,nl,...," N=l 

<kg + nOq....,kN + V'PO . ..PN> x 11 + 0 (a)}, 

where 

Ipo...pN> 5 R*(pO)...R*(p$I O>. (4.19) 

In normal ordered CL series, such as (4.1) or (4.4), the integrands 

~ nr pN are not uniquely specified. This is clear, for example, from 
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the equivalence of expressions (3.31) and (3.38). What is uniquely 

specified is the "R-symmetrized" function gx(') or FN(') which is 

obtained by symmetrizing over the p's and over the k's and using the 

commutation relations of the R-operators. Thus, for example 

FN %,k) = i(N:1)1l 1 FN(Pp, Qk) 'iT S(eij) E S(kji)- 
P.Q i<j i<j 

Pi'Pj Qi’Qj 
(4.20) 

Any two functions which lead to the same R-symmetrized function will give 

equivalent operator expressions. Using the trace theorem (4.18) and the 

GL series (4.4). and writing the inner product of R-states in (4.18) as 

sums of products of &functions and S-matrices we get the result for the 

Green's function, 

G 8, ,(X-Y) = z; 
ni -~f~i2 de,, 

C-2) e 2n x 1 
(4.21) 

x F,(')(p,p - Uq; &Y). 

In order to proceed further, we must derive some properties of the 

functions FN(S). These are obtained from (4.5) and (4.20). Note that 

the integrands pn in the GL series for Q(x) can be written in many 

different ways (only the R-symmetrized function has meaning), in 

particular, as in (3.31) or (3.38). Let us first consider the ni 
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dependence of F,(')(p,p-nq; X,y)- Since the denominators in (3.31) 

involve only single momentum differences (pi-kj), we conclude that 

FN 
(S) (p,.p-woq; X,Y) 3 

s(*O,---*N; p.x,y) 

nonl--.~ ’ 
(4.22) 

where HN is a homogeneous (N+l)th order multinomial in no,...,nN which is 

symmetric under simultaneous permutation of pi's and ni's. (The 

finiteness of FN(S) in the q + 0 limit follows from the inductive argu- 

ment outlined below-) Thus each term in HN is of the form 

x0 xl XN 
"0 "1 "'"N x function of (p,x,y), 

where 

Ai = N + 1. 

(4.23) 

(4.24) 

Let us pick out the "nonsingular" (i.e., *i independent) term in (4.22) 

by writing 

~(no---~; p,x.y) = *o*l---~ fN(p;x,y) + ~bo---~;p,x,y), 

(4.25) 

where HN contains only terms where one or more of the Xi-S is Zero- The 

point of making this separation is that now 4J may be obtained by symme- 

try in the ni's from its value with one of the ni'S set equal to zero, 

e.g., HNlnN = 0' The fUnCtiOn RN1 nN = 0 is determIned by the residue of 

the pole in FN @)(p,k;x,y) at pN = kN which can be related to the lower 

order function FNml(S). This iS the essential inductive step which 
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allows us to sum up all the ni-dependent terms in (4.21) and express the 

Green's function entirely in terms of the functions fN in (4.25). To 

study the residue of the pole in FN (S) at pN = kN, it is convenient to 

use (4.20) with an unsymmetrized function FN which is obtained from 

(3.38): 

FN(p,&x,y) = = 
ikoy-eox N 

Lo j dzl...dzN B(yCz~<...~z~~x~z~+l~---~zN) 

i(ki-eifZi 
I 

19. (slo-l)...(s~os SQ1...S ll-l,fis 
a, a-1-l) (4.26) 

x (SO> E+!+ls 
11+1,0”’ 

&~+!+'s,, a -l)...(sONsNo...SN-%N N-l-l). 
, , 

From this expression it is easy to show that the residue at pN-kN is 

given by 

FN NP,-P,) S(eN - ki) -1 

I 

FL:; 

(4.27) 

ki = pi - niq 

where A(k) is given in (2.18). The relation (4.27) allows us to sum up 

the ni dependent terms in (4.21). To understand the result, it is 

instructive to first consider the result of summing only the nonsingular 

(ni-independent) terms in FN(') (i-e-, keeping only the first term in 

(4.25). This would give 
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fN(P%Y). (4.28) 

e +1 

Using the induction (4.27), it can be shown that the sole effect of the 
-1 

singular terms is to replace e 
[ 

fxp; -!4 -1 
+1 

I, [ by e 
8E(Pi) 

+1 1 where 

c(p) is the excitation energy function of Yang and Yang, Eq. (2.21). 

Thus, the full Green's function is reduced to 

G&p-Y) = lo j jyo [P(P,) >]fN(PV.,Y), 

where 

F(P) = BE(pf - 
e +1 

(4.29) 

(4.30) 

We have now isolated all the B and P dependence of GB,lr(x-y) in terms of 

a single particle distribution function ii(p). The familiar thermodyna- 

mics of Yang and Yang can be recovered from (4.29) in the limit (x-y) 

+ 0. In this case the polynomial HN in (4.25) can be sho?m to have an 

overall factor of f 
i=o "i' This fact allows us to determine fN as well 

as HN from the induction (4.27), giving 

A(P~-P~+~). (4.31) 
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This can be recognized as the expansion of the Yang and Yang integral 

equation for the density function p('n) 

A.(k - q) p(q). (4.32) 

ThllS, the zero separation Green's function, which is just <$*(O)@(O)> = n 

particle density, is given by 

G8,,W = dk o(k), (4.33) 

where p(k) is defined by (4.32). (4.30), and (2.21). From the density as 

a function of f? and U, other thermodynamic quantities may be derived. 

Finally, let me note for later reference that the Green'B function 

expression (4.29) has a simple zero temperature limit 

‘Xx-y) = F+t G8,p (x-y) = 1 JkF E% fN(p;x,y). (4.34) 
N=O -kF ' 

To summarize, we compute the Green's functions as follows: Begin with ; 
1 

the functions FN('), the R-symmetrized GL integrands for +*(x)$(y) de- 

fined by (4.20) with some suitable unsymmetrized in&grands FN, e.g., Eq. 

(4.26). Then calculate the functions fN(p;x,y) by Eqs. (4.22) and 

(4.25). The zero-temperature and finite temperature Green's functions 

are given by (4.34) and (4.29) respectively. 

It would be nice to write the Green's function in closed form, but 

so far this has not been done. But recently it was shown that the first 

two terms in a strong coupling (large c) expansion of G(x-y) may be 

expressed in closed form in terms of Painlev; functions. The large 
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coupling results and their connection with the work of Sate, Niwa, and 

Jimbo will be discussed in the last two lectures. 

V. LARGE c EXPANSION OF THE EJO-POIm FUNCTION 

The Green's functions for impenetrable bosons (c=-) were extensively 

studied, first by Schultz and Lenard and nore recently by Jimbo et al. 

To make contact with these results we will consider a large c expansion 

of the two-point function 

G = G(O) + G(l) + Gc2) + . . . . (5.1) 

where G(*) is of order (l/c)". The form of the GL integrands Fi'given in 

(4.26) is well-suited for studying the c* limit. Note that the zi in- 

tegrations are ordered, z < z 12 < -.. < zN, and that 1 of the inte- 

grations are "trapped" between y and x, and N-9. of them are "untrapped" 

between x and % With each trapped z-integration is associated a factor 

(odd number of S's - I), 
~--. -L, 

0.2) ; 

while each untrapped z-integration has a factor 

(even number of S's - 1). 

7 

/ 

(5.3) ./ 

In the limit c+", S(p 
*j 

) + -1. and the factors (5.2) and (5.3) become -2 

and 0 respectively. Thus, only the terms in (4.26) with all z- 

integrations trapped contribute at c = m. (The Jordan-Wigner "tails" in 
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(3.41) cancel exact~ly outside the interval y < z < x.) This gives 

FNb&;w) = (-2)NJdzl...dzNt?(y < zl<...< zN< x) ; s?~*-~~)‘~. (5.4) 
i=l 

Since the R-operators anticommute for c = 0). we may symmetrize (5.4) over 

simultaneous permutations of P i 's and ki's, allowing us to make the 

replacement 

- (5'5) 
Y 

h'ote that because there are no untrapped integrations, there are no poles 

at pi= k and we may set q = 0 from the start. 

symetriied function FN(S) 

Since S = -1, the R- 

involves a determinant. In this way we get 

the expression for the c = m Green's function 

- (-2p ‘$@-“) = Ngo Ti-J [ Id %pi) $]~xdrl...~xdzN N(x,y;z.p),(5.6) 

where 9~ is an (N+l) X (N+l) determinant of exponentials, e.g, 

go = 1 

-*PO+Y) -iPo(x-zl) 

q= e 
e 

-ip1(21-Y) 
e 1 

-*Po(x-Y) -iPoWal) -ip1(x-z2) 
e e e 

cia2= e 
-*P1(al-Y) 

1 
-ip1(a1-z2) 

e 
-ip2(z2-y) -ip2(z2-21) 

e e 1 

(5.7a) 

,‘--\, 

(5.7b) i 

/I 

I 

(5.7.z) 
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etc. 

By carrying out the pi integrations in (5.6) we may write 

G$+-y) = + 

C 

K(x,y) K(x,zl) 

W,Y) K(zl,~l) 

+$ t'd.1 ['dr2 13x31 - . . . 

(5.8) 

where X = 2/n, and the kernel K is the Fourier transform of a Fermi-Dirac 

distribution, 

e-*P(=-Y) ; (p) dp 
0 P-9) 

2 
NP -!J1) + l] . -I 

_ 

with pa(p) = Ie At zero temperature the kernel reduces to 

K(x-y) = + 
kF 

J 
e-iP(x-Y)dp = sin+Y)* 

-kF 
X-Y 

(5.10) 

(Hereafter, I will set kF = 1.1 

The c = = Green's function (5.8) is essentially a Fredholm minor 

associated with the integral kernel K(x,y). Let me remind you how an 

integral equation is solved by Fredholm determinants. Consider the 

integral equation for a function R(x,y), 

R(x,y) = J.wbY) + x dz K(x,z) R(z,Y). (5.11)‘ 

By a continuum version of Kramer's rule, R(x,y) may be written as a ratio 

of determinants, 

R(x,Y) = 
Dl(x,Y;=,b) 

D(a,b) ' 
(5.12) 
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where Dl is the Fredholm minor 

Dl(x,y;a,b) = X(x,y)-Aybdil 
K(~,Y) 

a I 
K(x,zl) 

K(~,Y) K(zl>~l) 
fi:,,3.3,- . . . 

(5.13) 

and D is the Fredholm determinant, 

D(a,b) = 1:A[bx(z,z)dz +$~"dzl[~z21~~~::~~: ::~~:~~:/ -~... (5.14) 

= Det (1 - AK). 

The c = OJ Green's function (5.8) is thus a Fredholm minor with its 

arguments evaluated at the endpoints of the integration region, - 

G(')(a - b) =i Dl(a,b;a,b). (5.15) 

All of these c = m results have been known since the work of Lenard. 

Here we see how they follow as a special case of the quantum inverse 

formalism. Moreover, we can now go on to consider finite c corrections. 

An expansion in powers of (l/c) can be obtained by collecting the 

terms in (4.26) according to the number of untrapped z-integrations. 

Each untrapped integration is accompanied by a factor (even number of S's 

- 1). which is of order (l/c). Here I'll consider the Green's function 

up to order (l/c), so only term with zero or one untrapped integration 

must be kept. 

G(l) = Gy + Gy)’ (5.16) 

For the terms with no untrapped integrations, we use expansions of the 

form 
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(slo- 1) k10 - (-2)(1 - -) 
ic 

(slo- 1)(s20s 
12 

s21- 1) - (-7.1 2 I- 
L 

cklo+ k20+ k21+ p12) 

3 
(5.17) 

ic 

etc. By this approach we obtain the l/c correction 

PCP,) (PO- Pj) 
(5.18) 

dzN q$w;w), 

and Ed N is the same determinant of exponentials which appeared in the c = 

- Green's function. By writing out the determinant in (5.18) and 

expressing the factor x(po- p ) as derivatives with respect to.x,y, and 
j 

Zi, it is possible to write (5.18) in terms of the Fredholm resolvent and 

minor (5.12) and (5.13). Let us define the functions R(t) and Dl(t) by 

f 

t 
R(t) = !qt,O) + A2 

0 
dzl K(t.y) Wl.O) 

dz2 K(t,y) K(=l.~2) K(z2,W + . . . 

(5.19) 

t 
J I 

K(t.0) Dl(t) - X K(t,O) - X2 dzl 
0 

K(tyzl) I+$itdiljgtdz2,3 x 31- . . . 
K(y.0) K(~>z~) 

(5.20) 

After sbme manipulation, (5.18) may be written 

a21nD1 alnD1 alnD1 
--- 

atax at ax .(5.21) 
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Next we must consider the contribution of the term in (4.26) with 

oze untrapped z-integration. The corresponding S-matrix factor may be 

expanded, 

SONS sN-l,Ns 2 N-l 
NO"' N,N-1 - z i-0 .I I hi-'%) - (Pi - PN)l 

(5.22) 

2 N 
- z i=o r: (ki- P,) +g (PN- kN'. 

Since this is already of order l/c, the rest of the expression can be 

evaluated at c = -. In particular, the R's can be taken to anti- 

comnute. The second term in (5.22) is found to vanish by antisymetry, 

while the first term gives a contribution proportional to the c P m 
_ 

Green's function, 

p 1 G(O) 
m - (5.23) 

To summarize, the first two terms in a l/c expansion of G(t) are 

(5.24) 

a21*Dl 

atax (5.25) 

where R(t) and Dl(t) are given by (5.19) and (5.20). In the last 

lecture, I'll discuss the method for treating Green's functions developed 

by Sate, Miwa, and Jimbo22 and applied to the c = 01 nonlinear 

Schridinger model by Jimbo et a1.12 This method gives closed forms for 
a 

R(t) and Dl(t) in terms of Painleve transcendents. 
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VI. GREEN'S FUNCTIONS AS PAINLEVi FUNCTIONS 

c 
Simple Derivat_ion Of Painleve Equation 

Consider the resolvent R(x.y) at zero temperature defined by (5.11), 

R(x,y) = Wx,y) + a2 
b 

K(x,z) K(z,y) dz + . . . = [ 1 & (x.r) s(6.1)~ 

where the kernel K(x,y) = sin(x-y)/(x-y). The x and y dependence of 

(6.1) may be written in a factorized form by defining 

*ix+ A I 
b 

R*(x) = e dz K(s,zl)e 1 *iz1+ X2~bdzl~bdz2K(xrzl)K(zl,z2)e~a2 
a a a 

(6.2) 

+ . . . - 1 -lx E* Cd, I 
where 

E*(x) = e*ix- (6.3) 

The quantity R+(x) R-(y) - R-(x) R+(Y) can be worked out term by tern 

using 

and 

E+(z) E-(2') - E-(z) E+(z', = 21(2-z') K(z,z'), 

(x-21) + (21-q) +...+ (2,-y) = (x-y). 

(6.4) 

(6.5) 
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This gives the factorized expression 
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X R+(x) I R-(Y). - 
R(x,Y) = 

R-(x) R+(Y)] 

21(x - y) 
. (6.6) 

me series (6.2) my be differentiated term by tern to obtain aR,/ax. 

Since K is a difference kernel, we may replace -& -f -$, integrate by 
1 

parts, than replace a/azl + -a/%2, integrate by parts again, etc., until 
fiZN 

the derivitive is acting on e . The surface terms can also be summed, 

and we find 

R*(x) 

ax 
= fi R*(x) + R(x,a) R*(a) - R(x,b) R*(b). (6.7) 

Using the factorization property (6.6), it is seen that the column vector 

Y(X) = 

satisfies a first order equation 

y= ~-y+ 
[ x-a - I 

y(x), 

where 

(6.8) 

(6.9) 

A(a) = X 

- R:(a) 
> 

9 (6.10) 

- R+(a) R-(a) 
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and 

We nay also derive an equation by differentiating R&with respect to a or 

b. The derivative acting on the upper or lower limit of integration 

gives terms which sum up in the same way as the surface terms in (6.7). 

In this way we get 

g -Aoy, 
x-b 

+3.31y, 
x-a 

(6.12) 

(6113) 

Eqs. (6.9), (6.12). and (6.13) can be written as a total differential 

relation, 

dy = 3, (6.14) 

where Ris a differential form given by 

S-2 = A(a) d&-,(x-a) - A(b) da&-b) + Cdx. (6.15) 

The linear system of equations (6.14) is the fundamental property of the 

series (6.1) with kernel sin(x-y)/(x-y) which was discovered by Jimbo, et 

al. Later on, I will discuss how (6.14) follows directly from an iso- 
c 

monodromy property. But first let me derive the Fainleve expressions for 

R(t) and D(t), using (6.14). Let 

x = b = t/2 

(6.16) 

a = -t/2, 



Then din(x-a) = dkt = dt/t 
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dlln(x-b) = 0 (6.17) 

dx = l/2 dt. 

Denote by r*(t) the quantities (6.2) evaluated at (6.16). Then (6.14) 

can be written 

r; =$ r+ +A (r: - r!)r 

r*=-$r +&(r: - r2) r+. 

Now introduce two functions r(t) and $(t) by 

r+ = 2 in/4 

r = .in!4 

Then Eqs. (6.18) reduce to 

and 

r2 =$ ($' + cash $), 

1 1 
J"' +; 'i" +; cash $I -; sinh 2J, = 0. 

(6.18a) 

(6.18b) 

(6.19a) 

(6.19b) 

(6.20) 

(6.21) 
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. 
Eq. (6.21) is equivalent to a Painleve equation of the fifth kind. It is 

conveoient to make another change of variables 

sinh $ = cot 0. (6.22) 

Theo Eq. (6.21) becomes 

0” = [(VP - ] 1 cot Q ++-Q (6.23) 

The function Q(t) is completely specified by (6.23) along with the 

boundary condition 

O(t) - t - At2 + O(t3) as t + 0, C&24) 

which follows from the series expression (6.2). 

All the functions needed to express the c = m Green's function and 

the l/c correction can be expressed in terms of e(t). The function R(t) 

defined by (5.19) is 

R(t) = &$ 

while Dl(t), Eq. (5.20) satisfies 

a?, DI 

at 4 sin20 

(6.25) 

(6.26) 

Eq. (6.26) along with the condition 

Dl(O) = 1, (6.27) 

specifices Dl(t) completely. By numerical integration of Eq. (6.23), the 

functions G(O)(t) and G(l)(t), Eqs. (5.24) and (5.25), may be easily 
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plotted. The long distance behavior of the Green's function may be 

studied using the asymptotic expansion of o(t). The behavior of +(t) as 

t + m depends critically on the value of X. For -- < X c l/n, the asynp- 

totic behavior is O(t) * t + O(ht) while for l/n c X < -, it is +(t) 

--t + O(h). At the critical value X = l/n, O(t) goes to a constant, 

O(t) - n/2 + 0(1/t). The c = m Green's function G (O) is given in terms 

of O(t) at X = 2/r, while the l/c correction G(l) involves o(t) and its 

first X-derivative at that point. It is amusing to note that the criti- 

cal value X = l/r also arises in a physical problem, that of determining 

the eigenvalue distribution of random roatrices. 

To study the long distance behavior of the two-point function, we 

use the asymptotic expansion 

Q(t) - -t + tG + k&t + 0(1/t), (6.28) 

where k and to are X-dependent constants. For a detailed discussion of 

the asymptotic analysis, I refer you to the literature.g Here, I will 

simply mention that the dominant effect of the l/c correction is to alter 

the power-law falloff of the Green's function. The full Green's function 

G(t) behaves like 

G(t) - const x t-" [l + O(lh)l, (6.29) 

where v is a c-dependent constant. At c = -, Vaidya and Tracy showed 

that v = l/2. Our result for the l/c correction gives 

1 2kF y=--- 
2 

+ o&s 
nc .2 

(6.30) 
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This agrees with a recent result of Haldane 23 and also of Popov, who 

obtained the value of v for arbitrary c, 

v =+ rP(kF)l-2, (6.31) 

vhere p(kF) is the Lieb-Liniger density function at the Fermi surface. 

Monodromy and Isomonodromic Deformation Theory 22 

c 
The connection between Green's functions and Painleve functions is~ 

particularly fascinating because of the elegant mathematical structure 
c 

which can be associated with the Painleve equations. This mathenatical~ 

structure forms the basis of the analysis of Sate, Niwa, and Ji.mbo. 

Before introducing these ideas, let me explain what Painlevz did to get 

his name attached to these functions. In 1902 Painlev~25 studied and 

solved the problem of classifying all second order ordinary differential 

equations of the form 

Y ” = f(y,y’.t) (6.32) 

where f is an algebraic function. and with the requirement that the solu- 

tions should have no movable singularities. A movable singularity is one 

whose position depends on integration constants (i.e.. on boundary condi- 

tions) and not just on the parameters in the equation. For example, the 

equation y* = 1/2y has a movable singularity because its solution is 

y = (t-a)'12 where a is an arbitrary constant which doesn't appear in the 

differenttal equation- Painlevi showed that there were six kinds of 

equations of this form whose solutions could not be expressed in terms of 
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c 
elementary functions. These equations are known as Painleve I-VI. Some- 

what later Schlesinger26 and Garnier27 showed that all six Painlevi 

equations were obtained in a natural way as integrability conditions in 

the deformation theory of ordinary differential equations. The relevance 
c 

of Painleve equations to the theory of Green's functions was first exhib- 

ited by Wu et al.,28 who showed that the spin-spin correlation funciion 

of the two-dimensional Ising model in the scaling limit could be 

expressed in terms of a solution to Painleve III. Motivated by this 

result, Sate, Miwa, and Jimbo discovered a very elegant derivation of the 

correlation function which exploited the monodromy property of a certain 

expectation value of order and disorder operators. The result of Jimbo 

et al.,12 
. . 

for the c = er nonlinear Schrodinger model was obtained by a 

similar technique. 

To introduce the idea of monodromy and isomonodromic deformations, 

let us consider a linear problem of the form 

where A,, v= l,..., N. are x independent M X M matrices, and Y(x) is an 

M x M matrix solution satisfying some specified boundary condition, e.g., 

Y(xo) = I. Y(x) is not generally single-valued as we continue around the 

singularities at al.a2,...aN. In general, traversing a closed curve 

around the singularity at x = a, will produce a linear transformation 

Y(x) ---+ Y(x) M,. (6.34) 
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where M, is an x-independent matrix called the monodromy matrix. Near 

x = a" we can write 

.% 
Y(x) = Y(x) (x-a”) %I 

, (6.35) 

A 

where L, iS a constant matrix and Y(X) is nonsingular at x E a,,. The 

monodromy matrices are related to the L,'s by 

2ilrL" 
M,=e . (6.36) 

ay -I Looking at the x = a,, pole of x Y we see that 

Av = {(a,) Lv ;(a")-1. (6.37) 

The problem of constructing the monodromy matrices from the differential 

equation (6.33) is somewhat analogous to the direct problem of scattering 

theory. The analog of the inverse problem, i.e., reconstructing the 

function Y(x) and the differential equation (6.33) from the monodromy 

"data," is known as the Rieoann-Hilbert problem. Schlesinger26 addressed 

this question by studying the behavior of the equation (6.33) under a 

variation of the positions of the singularities av Specifically,, he 

allowed the coefficient matrices A, to depend on the a,,'~ and asked what 

conditions would lead to monodromy matrices M, which were independent of 

the variation. Such an "isomonodromic deformation" leads to a linear 

system of equations for Y: 

(6.38a) 
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ay A 
-= 
aa - --J- Y. 

Y X-a ” 

In differential form, this reads 

where 

FERMILAB-Conf-81/47-THY 

(6.38b) 

(6.39) 

(6.40) 

The dependence of the A,'s on the au' s is given by the nonlinear con- 

sistency (integrability) conditions for the linear system (6.39). Using 

Poincare's Lema, d*(anything) = 0 (i.e., mixed partial derivatives t&en 

in reverse order are equal), we get the integrability condition 

dn = KlAR. (6.41) 

This is analogous to F,,,, = 0, gq. (2.24) in the inverse scattering 

method. In explicit form, the dependence ,of the Av's on the a,,'~ which 

yields fixed monodrony data is given by "Schlesinger's equations," 

aAv bv***1 (u+“) PE 
aa 

u 
a “-a 

u 

aA 
L,- 
a=” 

1 b”4 . 
u’#v “v-=v* 

(6.4&t) 

(6.42b) 

In the simplest nontrivial case of Schlesinger's equations, the Aves 

are 2 x 2 matrices and there are N=4 singularities. This case reduces to 
c 

an ordinary nonlinear differential equation which is just Painleve VI. 

Garnix-*' showed 
A 

that Painleve I thru V could also be obtained as 

monodrony preserving deformation equations. For this one must consider 

the linear equation 
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z-i1 -&.CY, 

i 1 

(6.43) 

which allows for exponential behavior at infinity, 

Y(x) _ ecx r1 + 0(1/x)1. (6.44) 

For (6.43) the simplest nontrivial case is N-2, and the dePormation 
c 

equations reduce to Painleve V. This is the case which is relevant to 
. . 

the nonlinear Schrodinger model. The result expressing the functions 
. 

R(t) and Dl(t), Eqs. (5.19) and (5.20) in terms of Painleve function can 

be derived frown a nonodromy argument. To see how this works. separate 

the kernel K(x,y) = sin(x-y)/(x-y) into two pieces, K = K+ + K-, with- 

K*(x.Y) = f 
efi (x-y) 

21(x-y) - (6.45) 

&" define R*(x) as in (6.21, and also define the series 

c* = E*+ X-E* + X2,-K,*+ A3K-K2E*+... = E*+ X -[&] E** (6.46) 

We see that R*(x) is nonsingular at x=a and x=b. while R*(x) has a cut in 

the x-plane from a to b. Using the discontinuity of the kernel, 

Disc K-(x,Y) = rrd(X-y), (6.47) 

we get 

Disc G*(x) = nAR*(x). (6.48) 
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Thus, the matrix 

Y(x) = , (6.49) 

has an isomonodromy property. Defining closed curves ~1 and ~2 around a 

and b respectively, it is easy to show that 

Y(x) e Y (x)M1 
Yl 

Y(x) -u;-’ (X)z.12’ 

where the monodromy matrices are 

M = 1 nX 
( 1 101 M2 = ; -1”” . ( 1 

(6.50a) 

(6.5Ob) 

(6.51) 

The monodromy is independent of the positions of the singularities a and 

b, and hence, by Schesinger's result, it follows that Y(x) obeys the lin- 

ear relation 

dY = Ttp (6.52) 

where 

Si = A(a) d&x(x-a) - A(b) d&(x-b) + C. (6.53) 

The first colucm of (6.52) is just Eq. (6-91, but now elegantly derived 
c 

from monodrony properties. The Painleve V equation follows from the 

integrability condition dQ = fZliR. 

The SNJ analysis of Green's functions adds some substance to the 

connection between integrability and duality. This is especially clear 
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in the case of the two-dimensional Ising model, where the function which 

exhibits a monodromy property is constructed fron expectation values of 

order and disorder fields, and the monodromy is a direct consequence of 

the algebraic properties of these fields. It is encouraging to note that 

very similar ideas have emerged in recent studies of four-dimensional 

gauge fields.2g 
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